B000192: mudanças entre as edições
Sem resumo de edição |
Sem resumo de edição |
||
Linha 93: | Linha 93: | ||
|ind1=8 |
|ind1=8 |
||
|ind2=# |
|ind2=# |
||
|data=$a Abstract: In this work a method is developed, to assess the financial attractiveness provided by adding a Battery Energy Storage System (BESS) in distributed photovoltaic (PV) generation on public buildings in Brazil. The method is applicable to Prosumer Units (PU) connected to the medium voltage grid operating under timebased electricity tariffs and was based on techniques for measuring the electric energy demand and the surplus PV energy injected by the PU into the grid. Empirical data, including ambient temperature and solar irradiation, were employed to assess the solar radiation resource and the corresponding PV output. The BESS primary objective was aimed at the maximum use of the surplus PV energy and to achieve optimal reductions in electric energy expenses through effective energy arbitrage mechanisms. In BESS simulations, PU power flows were utilized. The procedural steps of the methodology began with an analysis encompassing assessment of solar resource, PU consumption profiles, and BESS sizing and operation. Subsequently, steps entailed contracted power optimization, PU net-metering analysis, and evaluation of BESS impacts on electric energy expenses. Lastly, a regulatory and economic analysis was carried out, incorporating considerations on BESS taxation, behind-the-meter regulations, and a sensitivity assessment extending to the 2030 outlook. The suggested methodology was applied to a case study of a public building PU in Brazil, the Solar Energy Research Laboratory Fotovoltaica/UFSC at Universidade Federal de Santa Catarina in Florianopolis. The findings indicated that during peak hours the adoption of the BESS would provide a 100% reduction in measured power demands and consumed energy, with a significant annual injection of power in the utility grid. During off-peak hours, the annual self-consumption of the PU would increase by nearly 30%. This outcome underscores the benefits associated with time-of-use billing structures for public PU+BESS. Approximately 85% of the total energy required to charge the BESS would be originated from the surplus of PV energy. The remaining 15% would be supplemented by the utility grid. The results suggest that the financial viability of incorporating BESS becomes favorable when the battery cost is below 365 US |
|data=$a Abstract: In this work a method is developed, to assess the financial attractiveness provided by adding a Battery Energy Storage System (BESS) in distributed photovoltaic (PV) generation on public buildings in Brazil. The method is applicable to Prosumer Units (PU) connected to the medium voltage grid operating under timebased electricity tariffs and was based on techniques for measuring the electric energy demand and the surplus PV energy injected by the PU into the grid. Empirical data, including ambient temperature and solar irradiation, were employed to assess the solar radiation resource and the corresponding PV output. The BESS primary objective was aimed at the maximum use of the surplus PV energy and to achieve optimal reductions in electric energy expenses through effective energy arbitrage mechanisms. In BESS simulations, PU power flows were utilized. The procedural steps of the methodology began with an analysis encompassing assessment of solar resource, PU consumption profiles, and BESS sizing and operation. Subsequently, steps entailed contracted power optimization, PU net-metering analysis, and evaluation of BESS impacts on electric energy expenses. Lastly, a regulatory and economic analysis was carried out, incorporating considerations on BESS taxation, behind-the-meter regulations, and a sensitivity assessment extending to the 2030 outlook. The suggested methodology was applied to a case study of a public building PU in Brazil, the Solar Energy Research Laboratory Fotovoltaica/UFSC at Universidade Federal de Santa Catarina in Florianopolis. The findings indicated that during peak hours the adoption of the BESS would provide a 100% reduction in measured power demands and consumed energy, with a significant annual injection of power in the utility grid. During off-peak hours, the annual self-consumption of the PU would increase by nearly 30%. This outcome underscores the benefits associated with time-of-use billing structures for public PU+BESS. Approximately 85% of the total energy required to charge the BESS would be originated from the surplus of PV energy. The remaining 15% would be supplemented by the utility grid. The results suggest that the financial viability of incorporating BESS becomes favorable when the battery cost is below 365 US/kWh. In approximately 50% of the Brazilian territory, prevailing economic conditions (mostly due to local distribution utility tariffs and local state taxes) support the adoption of BESS. Widespread, nationwide economic feasibility of integration is anticipated for the year 2027. It was observed that government policies to exempt BESS taxation, even if temporary, would be extremely interesting to promote the widespread adoption of this technology. The 2030 outlook of the transition to these benign renewable energy technologies is already in place, and will dominate the energy mix. |
||
}} |
}} |
||
{{Field |
{{Field |
Edição atual tal como às 10h21min de 30 de outubro de 2024
Investigating the potantial for battery energy storage system in distributed photovoltaic generation on public buildings in Brazil [recurso eletrônico] / Gustavo Xavier de Andrade Pinto ; orientador, Ricardo Rüther ; coorientadora, Helena Flávia Naspolini
Data de publicação
2024
Descrição física
140 p. : il.
Nota
Disponível somente em versão on-line.
Tese (doutorado) – Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Civil, Florianópolis, 2024.
Inclui referências.
exportar: MARC tags, MARCXML, ISO 2709
Campo | Ind1 | Ind2 | Dados |
---|---|---|---|
Líder | 04176ntm a2200277 a 4500 | ||
001 - Número de controle | B000192 | ||
003 - Identificador do número de controle | BR-FlWIK | ||
005 - Data e hora da última transação | 20241030102125.0 | ||
008 - Informações gerais | 241029s2024 scba g m 000 0 eng d | ||
040 - Fonte da catalogação | # | # |
$aBR-FlWIK |
090 - Número de chamada local (etiqueta) | # | # |
$aCETD |
100 - Ponto de acesso principal - Nome pessoal | 1 | # |
$aPinto, Gustavo Xavier de Andrade |
245 - Indicação de título | 1 | 0 |
$aInvestigating the potantial for battery energy storage system in distributed photovoltaic generation on public buildings in Brazil |
260 - Publicação, distribuição, etc. (Imprenta) | # | # |
$c2024. |
300 - Descrição física | # | # |
$a140 p. : |
500 - Nota geral | # | # |
$aDisponível somente em versão on-line. |
502 - Nota de dissertação | # | # |
$aTese (doutorado) – Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Civil, Florianópolis, 2024. |
504 - Nota de bibliografia, etc. | # | # |
$aInclui referências. |
520 - Resumo, etc. | 8 | # |
$aAbstract: In this work a method is developed, to assess the financial attractiveness provided by adding a Battery Energy Storage System (BESS) in distributed photovoltaic (PV) generation on public buildings in Brazil. The method is applicable to Prosumer Units (PU) connected to the medium voltage grid operating under timebased electricity tariffs and was based on techniques for measuring the electric energy demand and the surplus PV energy injected by the PU into the grid. Empirical data, including ambient temperature and solar irradiation, were employed to assess the solar radiation resource and the corresponding PV output. The BESS primary objective was aimed at the maximum use of the surplus PV energy and to achieve optimal reductions in electric energy expenses through effective energy arbitrage mechanisms. In BESS simulations, PU power flows were utilized. The procedural steps of the methodology began with an analysis encompassing assessment of solar resource, PU consumption profiles, and BESS sizing and operation. Subsequently, steps entailed contracted power optimization, PU net-metering analysis, and evaluation of BESS impacts on electric energy expenses. Lastly, a regulatory and economic analysis was carried out, incorporating considerations on BESS taxation, behind-the-meter regulations, and a sensitivity assessment extending to the 2030 outlook. The suggested methodology was applied to a case study of a public building PU in Brazil, the Solar Energy Research Laboratory Fotovoltaica/UFSC at Universidade Federal de Santa Catarina in Florianopolis. The findings indicated that during peak hours the adoption of the BESS would provide a 100% reduction in measured power demands and consumed energy, with a significant annual injection of power in the utility grid. During off-peak hours, the annual self-consumption of the PU would increase by nearly 30%. This outcome underscores the benefits associated with time-of-use billing structures for public PU+BESS. Approximately 85% of the total energy required to charge the BESS would be originated from the surplus of PV energy. The remaining 15% would be supplemented by the utility grid. The results suggest that the financial viability of incorporating BESS becomes favorable when the battery cost is below 365 US/kWh. In approximately 50% of the Brazilian territory, prevailing economic conditions (mostly due to local distribution utility tariffs and local state taxes) support the adoption of BESS. Widespread, nationwide economic feasibility of integration is anticipated for the year 2027. It was observed that government policies to exempt BESS taxation, even if temporary, would be extremely interesting to promote the widespread adoption of this technology. The 2030 outlook of the transition to these benign renewable energy technologies is already in place, and will dominate the energy mix. |
650 - Ponto de acesso secundário de assunto - Termo tópico | 0 | 4 |
$aEngenharia civil |
650 - Ponto de acesso secundário de assunto - Termo tópico | 0 | 4 |
$aEnergia solar |
650 - Ponto de acesso secundário de assunto - Termo tópico | 0 | 4 |
$aArmazenamento de energia |
700 - Ponto de acesso secundário - Nome pessoal | 1 | # |
$aRüther, Ricardo, |
700 - Ponto de acesso secundário - Nome pessoal | 1 | # |
$aNaspolini, Helena Flávia, |
710 - Ponto de acesso secundário - Entidade coletiva | 2 | # |
$aUniversidade Federal de Santa Catarina. |
856 - Localização e acesso eletrônicos | 4 | 0 |
$zVersão integral em pdf |